141 research outputs found

    Matrix Quantization of Turbulence

    Full text link
    Based on our recent work on Quantum Nambu Mechanics \cite{af2}, we provide an explicit quantization of the Lorenz chaotic attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. For the volume preserving part, they satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Matrix Lorenz system develop fast decoherence to N independent Lorenz attractors. On the other hand there is a weak dissipation regime, where the quantum mechanical properties of the volume preserving non-dissipative sector survive for long times.Comment: 14 pages, Based on invited talks delivered at: Fifth Aegean Summer School, "From Gravity to Thermal Gauge theories and the AdS/CFT Correspondance", September 2009, Milos, Greece; the Intern. Conference on Dynamics and Complexity, Thessaloniki, Greece, 12 July 2010; Workshop on "AdS4/CFT3 and the Holographic States of Matter", Galileo Galilei Institute, Firenze, Italy, 30 October 201

    Symmetries within domain walls

    Full text link
    The comparison of symmetries in the interior and the exterior of a domain wall is relevant when discussing the correspondence between domain walls and branes, and also when studying the interaction of walls and magnetic monopoles. I discuss the symmetries in the context of an SU(N) times Z_2 model (for odd N) with a single adjoint scalar field. Situations in which the wall interior has less symmetry than the vacuum are easy to construct while the reverse situation requires significant engineering of the scalar potential.Comment: 5 pages. Added reference

    Modular discretization of the AdS2/CFT1 Holography

    Get PDF
    We propose a finite discretization for the black hole geometry and dynamics. We realize our proposal, in the case of extremal black holes, for which the radial and temporal near horizon geometry is known to be AdS2=SL(2,R)/SO(1,1,R)_2=SL(2,\mathbb{R})/SO(1,1,\mathbb{R}). We implement its discretization by replacing the set of real numbers R\mathbb{R} with the set of integers modulo NN, with AdS2_2 going over to the finite geometry AdS2[N]=SL(2,ZN)/SO(1,1,ZN)_2[N]=SL(2,\mathbb{Z}_N)/SO(1,1,\mathbb{Z}_N). We model the dynamics of the microscopic degrees of freedom by generalized Arnol'd cat maps, ASL(2,ZN){\sf A}\in SL(2,\mathbb{Z}_N), which are isometries of the geometry at both the classical and quantum levels. These exhibit well studied properties of strong arithmetic chaos, dynamical entropy, nonlocality and factorization in the cutoff discretization NN, which are crucial for fast quantum information processing. We construct, finally, a new kind of unitary and holographic correspondence, for AdS2[N]_2[N]/CFT1[N]_1[N], via coherent states of both the bulk and boundary geometries.Comment: 33 pages LaTeX2e, 1 JPEG figure. Typos corrected, references added. Clarification of several points in the abstract and the tex

    Metastability of Spherical Membranes in Supermembrane and Matrix Theory

    Get PDF
    Motivated by recent work we study rotating ellipsoidal membranes in the framework of the light-cone supermembrane theory. We investigate stability properties of these classical solutions which are important for the quantization of super membranes. We find the stability modes for all sectors of small multipole deformations. We exhibit an isomorphism of the linearized membrane equation with that of the SU(N) matrix model for every value of NN. The boundaries of the linearized stability region are at a finite distance and they appear for finite size perturbations.Comment: 7 pages (two column

    On sphaleron deformations induced by Yukawa interactions

    Full text link
    Due to the presence of the chiral anomaly sphalerons with Chern-Simons number a half (CS=1/2) are the only static configurations that allow for a fermion level crossing in the two-dimensional Abelian-Higgs model with massless fermions, i.e. in the absence of Yukawa interactions. In the presence of fermion-Higgs interactions we demonstrate the existence of zero energy solutions to the one-dimensional Dirac equation at deformed sphalerons with CS1/2.\neq 1/2 . Induced level crossing due to Yukawa interactions illustrates a non-trivial generalization of the Atiyah-Patodi-Singer index theorem and of the equivalence between parity anomaly in odd and the chiral anomaly in even dimensions. We discuss a subtle manifestation of this effect in the standard electroweak theory at finite temperatures.Comment: 14 pages, Latex, NBI-HE-93-7

    Phase Space Geometry and Chaotic Attractors in Dissipative Nambu Mechanics

    Full text link
    Following the Nambu mechanics framework we demonstrate that the non-dissipative part of the Lorenz system can be generated by the intersection of two quadratic surfaces that form a doublet under the group SL(2,R). All manifolds are classified into four dinstict classes; parabolic, elliptical, cylindrical and hyperbolic. The Lorenz attractor is localized by a specific infinite set of one parameter family of these surfaces. The different classes correspond to different physical systems. The Lorenz system is identified as a charged rigid body in a uniform magnetic field with external torque and this system is generalized to give new strange attractors.Comment: 22 pages, 13 figure
    corecore